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Abstract—Radio Frequency IDentification (RFID) tags need to include security functions, yet at the same time, their resources are
extremely limited. Moreover, to provide privacy, authentication, and protection against tracking of RFID tags without losing the system
scalability, a public-key-based approach is inevitable. In this paper, we present an architecture of a state-of-the-art processor for RFID
tags with an Elliptic Curve (EC) processor over GFð2163Þ. It shows the plausibility of meeting both security and efficiency requirements
even in a passive RFID tag. The proposed processor is able to perform EC scalar multiplications and general modular arithmetic
(additions and multiplications), which are needed for the cryptographic protocols. As we work with large numbers, the register file is the
most critical component in the architecture. By combining several techniques, we are able to reduce the number of registers from nine
to six in the EC processor. To obtain an efficient modulo arithmetic, we introduce a redundant modular operation. Moreover, the
proposed architecture can support multiple cryptographic protocols. The synthesis results with a 0.13-�m CMOS technology show that
the gate area of the most compact version is 12.5 Kgates.

Index Terms—RFID systems, security processor, elliptic curve cryptography, scalable hardware, arithmetic and logic units, public-key

cryptosystems.
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1 INTRODUCTION

DESIGNING a Radio Frequency IDentification (RFID)
system is one of the most challenging tasks since it

requires compact and power-efficient solutions, especially
when security-related processing is needed. The most
commonly required security properties are anticloning
and untractability. Besides these security properties, the
systems should be scalable since the number of tags can be
very large. For example, it can be millions for large libraries
or warehouses. To satisfy those security and system
requirements, it is proven that a public-key cryptosystem
is necessary [1]. An Elliptic Curve (EC)-based cryptosystem
would be one of the best candidates for the RFID systems
due to its small key size and efficient computation.

In this paper, the proposed RFID processor is composed of
a microcontroller, an EC processor (ECP), and a bus manager,
where the ECP is over GFð2163Þ. For an efficient computation
with restrictions on the gate area and the number of cycles,
several techniques are introduced in the algorithms and the
architecture level. The optimization techniques can be

considered in two parts: the ECP and the microcontroller.
First, noting that the ECP is dominated by the registers due to
a large key size of 163 bits, the optimization of the ECP is
mostly concentrated on the register file. By proposing a
common Z-coordinate system (and its corresponding for-
mulas) and by introducing a register reuse technique, we
reduce the number of registers from nine to six. In addition,
we design a new register file architecture that reduces around
30 percent of gate area of the register file with small overhead
in cycles. Second, the microcontroller is designed to perform
general modular operations efficiently. For efficient general
modular operations, we propose a redundant representation
that results in an efficient computation with less memory
compared to conventional methods.

Those techniques result in the most compact ECP of
10.1 Kgates with 276 Kcycles for one point multiplication. The
ECP is attached to the micro controller of a tag. General
modular operations are also needed for the computation of
the authentication protocols. In general, the minimally
required operations are modular additions and multiplica-
tions. The modular additions and multiplications take
574 cycles and 25 Kcycles, respectively, for a word size of
163 bits. Since the modular operations can be performed in
parallel with the EC scalar multiplication, the former
operations do not contribute to the latency. As a result, the
overall architecture takes 12.5 Kgates. The architecture is also
scalable in the digit size of the ECP (the ECP’s ALU performs
the field multiplication in digit serial), and hence, a better
performance can be easily obtained. We also demonstrate the
proposed processor for an EC-based authentication protocol.

The remainder of this paper is organized as follows: In
Section 2, an overview of arithmetic operations for EC
Cryptography (ECC) is introduced, and in Section 3, the
starting points are summarized. The system overview of the
proposed RFID processor architecture is shown in Section 4,
and several techniques to minimize the ECP are described
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in Section 5. The architecture and the instructions of the
RFID microcontroller are given in Section 6, and the
synthesis results and the performance analysis are sum-
marized in Section 7 followed by the conclusion in Section 8.

2 OVERVIEW OF ARITHMETIC OPERATIONS FOR

ELLIPTIC CURVE CRYPTOGRAPHY

ECC includes protocols that are based on the arithmetic of
ECs. Curves that are commonly used in applications are
usually defined over GFðpÞ or GFð2nÞ, where p is a prime
number. EC systems over both types of fields provide the
same level of security, but the so-called binary fields have
some implementation advantages. Namely, binary arith-
metic is “carry-free,” squaring can be implemented very
efficiently in some cases, etc. The properties are very
convenient for hardware implementations. Binary fields
offer also more arithmetic options as there are many
choices for bases, irreducible polynomials, fields, etc. In
general, the EC arithmetic consists of several hierarchical
levels. The top level is EC scalar multiplication, which is
executed by point addition and doubling. The point
operations can be performed by different formulas, which
depend on the representation chosen, i.e., coordinates. The
formulas for point arithmetic are sequences of finite field
operations: addition/subtraction, multiplication/squaring,
and inversion.

2.1 EC Scalar Multiplication

All ECC protocols include one or a few scalar or point
multiplications. This operation is achieved by repeated
point additions and doublings. The basic algorithm for
scalar multiplication is the so-called binary method [2].

Algorithm 1. Scalar multiplication: Binary method [2]

Require: A point P , a t-bit integer k, k ¼ ðkt�1; kt�2; . . . k0Þ2,
ki 2 f0; 1g

Ensure: Q ¼ kP
1: Q O;

2: for i from t� 1 down to 0 do

3: Q 2Q;

4: If ki ¼ 1, then Q Qþ P ;

5: end for

6: Return Q;

For scalar multiplication, one often chooses the Mon-
tgomery ladder [3]. In the Montgomery ladder, the
computation is balanced and independent of ki in the
iteration, and therefore, it is secure against simple side-
channel attacks.

Algorithm 2. Montgomery ladder [3]

Require: a t-bit integer k > 0 and a point P

Ensure: kP

1: k 1, kt�2; . . . ; k1; k0;

2: P1  P , P2  2P ;

3: for i from t� 2 down to 0 do

4: If ki ¼ 1 then P1  P1 þ P2, P2  2P2;

5: else P2  P2 þ P1, P1  2P1;

6: end for

7: Return P1;

For the point operation, there exist several formulas,
depending on the choice of coordinates. For example,
formulas based on affine coordinates and projective co-
ordinates can be found in [6] and [9], respectively.
Projective coordinates are commonly used to avoid the
field inversion.

2.2 General Modular Arithmetic Operation

Besides the EC scalar multiplier, general modular arith-
metic operations are required to perform the cryptographic
protocols. For example, the Schnorr protocol [4] is shown in
Fig. 1. When the prover calculates yð¼ keþ rmod nÞ,
general modular operations (multiplication and addition)
should be performed. General modular operations include
also the reduction operation. Efficient reduction is possible
for Mersenne primes, but since n is the order of a curve, the
reduction should work for an arbitrary n. In this case, the
reduction needs more computation than the addition and
multiplication themselves.

There exist efficient reduction algorithms such as
Montgomery’s reduction algorithm [7] and Barrett’s
algorithm [8]. However, since Montgomery’s algorithm
requires the transformation overhead, it is not convenient
to use it in this situation. In Barrett’s algorithm, the
reduction can be performed after calculating the multi-
plication and the quotient. Hence, it requires temporary
memory of five times the size of n. Considering the
scarceness of resources in RFID systems, the required
memory should be minimized.

In this paper, we propose a redundant representation
based on the addition of a few guard bits for general
modular operations, which is efficient and requires a small
temporary memory, as will be explained in detail in
Section 6.

3 STARTING POINTS

In this section, we describe two building blocks that are our
starting points. The first one is the Montgomery ladder with
the López-Dahab algorithm. This approach allows an
implementation that does not need the storage of the
Y -coordinate. The second one is a compact arithmetic unit to
perform the field operations.
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3.1 Montgomery Ladder with the López-Dahab
Algorithm

The Montgomery ladder with López-Dahab’s algorithm
shown in Algorithm 3 uses a projective coordinate
system. The point addition formulas of ðXAdd; ZAddÞ  
MaddðX1; Z1; X2; Z2Þ are defined by

ZAdd ¼ðX1 � Z2 þX2 � Z1Þ2;
XAdd ¼x � ZAdd þ ðX1 � Z2Þ � ðX2 � Z1Þ:

ð1Þ

Algorithm 3. Montgomery ladder with the López-Dahab

algorithm [9]

Require: An EC y2 þ xy ¼ x3 þ ax2 þ b, a point P , a t-bit

integer k, k ¼ ð1; kt�2; . . . ; k0Þ2, ki 2 f0; 1g
Ensure: Q ¼ kP

1: If (k ¼ 0 or x ¼ 0) then output (0, 0) and stop;

2: X1  x, Z1  1, X2  x4 þ b, Z2  x2;

3: for i from t� 2 down to 0 do

4: If ki ¼ 1 then

5: ðX1; Z1Þ  MaddðX1; Z1; X2; Z2Þ,
6: ðX2; Z2Þ  MdoubleðX2; Z2Þ;
7: else ðX2; Z2Þ  MaddðX2; Z2; X1; Z1Þ,
8: ðX1; Z1Þ  MdoubleðX1; Z1Þ;
9: end for

10: Return Q MxyðX1; Z1; X2; Z2Þ;
The doubling formulas of ðXDouble; ZDoubleÞ  

MdoubleðX2; Z2Þ for the case of ki ¼ 0 are defined by

ZDouble ¼ðX2 � Z2Þ2;
XDouble ¼X4

2 þ b � Z4
2 :

ð2Þ

Q MxyðX1; Z1; X2; Z2Þ is the conversion from projec-
tive coordinate to affine coordinate. López-Dahab’s addi-
tion and doubling algorithms are described in Table 1,
where c2 ¼ b.

The total number of registers required in Table 1 is six,
which is for storage of X1, Z1, X2, Z2, T1, and T2. The
required field operations for the Addition Algorithm are
four multiplications, one squaring, and two additions, and
for the Doubling Algorithm, one needs two multiplications,
four squarings, and one addition. Note that it is not
necessary to maintain the Y -coordinate during the iterations
since it can be derived at the end of the computation.

3.2 Modular Arithmetic Logic Unit (MALU)

In order to perform the field operations, i.e., the multi-
plications, squarings, and additions in Table 1, we need a
Modular Arithmetic Logic Unit (MALU). The MALU

architecture is a compact architecture that performs the
arithmetic field operations shown as follows [12]:

AðxÞ ¼BðxÞ � CðxÞmod P ðxÞ; if cmd ¼ 1;

AðxÞ ¼AðxÞ þ CðxÞmod P ðxÞ; if cmd ¼ 0;
ð3Þ

where AðxÞ ¼ �aix
i, BðxÞ ¼ �bix

i, CðxÞ ¼ �cix
i, and

P ðxÞ ¼ x163 þ x7 þ x6 þ x3 þ 1.
In the MALU, the squaring operation uses the same logic

as the multiplication by duplicating the operand. With
a digit size of d, the field multiplication and addition take

163
d

� �
and one cycle, respectively. The benefit of this

architecture is that the multiplication and addition opera-
tions share the XOR array, and by increasing the digit size,
the MALU can be easily scaled. More explanation about the
MALU is given in Section 5.

4 SYSTEM OVERVIEW

The RFID processor is composed of a microcontroller, a bus
manager, and an ECP. It is connected with a front-end
module, a random number generator (RNG), ROM, and
RAM, as illustrated in Fig. 2. A front-end module includes an
antenna, an Analog-to-Digital (A/D) converter, a modulator,
and a demodulator and provides an interface with the bus
manager on an 8-bit bus. The solid lines are for data
exchange, the dash lines with numbers are for addressing,
and the dash lines without numbers are control signals.

The ROM stores program codes and data. The program
is executed by the microcontroller and the data may include
a tag’s private key, the server’s public key and system
parameters. The program is basically an authentication
protocol. Hardwiring of an authentication protocol is not a
flexible solution because protocols are often changed due to
a constant progress in cryptanalysis. Therefore, we choose a
design that can be programmed for several authentication
protocols even after ASIC is produced. The private key and
the system parameters should be changeable since the
private key of a tag should be different for each tag, and the
system parameters could be different, depending on RFID
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TABLE 1
López-Dahab’s Addition and Doubling Algorithms

Fig. 2. Proposed RFID processor architecture.



system users. Therefore, the used ROM should be EPROM
or EEPROM. RAM is used to store intermediate or final
results of calculations by the microcontroller and the ECP.
Even though we exclude RAM and ROM from our design,
they should be embedded in the design when the actual
ASIC is produced.

The microcontroller is able to perform general modular
arithmetic operations (additions and multiplications) in a
byte-serial fashion. It also gives commands for the execu-
tion of the ECP via the bus manager.

The ECP loads a key ðkÞ and an EC point ðP Þ from ROM
or RAM and executes the EC scalar multiplication ðkP Þ.
After finishing the scalar multiplication, it stores the results
in RAM.

The bus manager takes a role as the bridge for the data
flow from/to outside of the RFID processor. It also
arbitrates the memory access of the microcontroller and
the ECP. A higher priority is given on the ECP than the
microcontroller since the execution time is more critical in
the former. For this priority setting, the ECP signals the bus
manager in advance of memory access.

5 ELLIPTIC CURVE PROCESSOR

5.1 Implementation Considerations

If López-Dahab’s algorithm is implemented based on the
MALU in a conventional way, the total number of registers
is nine, i.e., three registers for the MALU plus six registers
for the Montgomery ladder algorithm. In [13], three
registers and five RAMs are used (eight memory elements
in total). One register is reduced by modifying López-
Dahab’s algorithm and assuming that constants can be
loaded directly to the MALU without using a register. In
our architecture, we are able to reduce the number of
registers to six even without relying on these assumptions.
As the registers occupy more than 80 percent of the gate
area in a conventional architecture, reducing the number of
the registers and the complexity of the register file are very
effective to minimize the total gate area.

Accordingly, our compact architecture achieves two
things: reducing the number of registers (one register
reduction by using the common Z projective coordinate
system and two registers reduction by register reuse) [14]
and designing a compact register file architecture by
limiting the access to the registers.

5.2 Common Z Projective Coordinate System

We propose new formulas for the common Z projective
coordinate system where the Z values of two EC points in
the Montgomery ladder algorithm are kept the same during
the process. New formulas for the common Z projective
coordinate system have been proposed over prime fields in
[10]. However, this work is different from ours. First, they
made new formulas over a prime field, while ours is over a
binary field. Second, they made new formulas to reduce the
computation in a special addition chain, while our formulas
slightly increase the computation amount in order to reduce
the number of the registers. Again, note that reducing even
one register decreases the total gate area considerably.

Since in López-Dahab’s algorithm, two EC points must
be maintained during EC scalar multiplication, the required
number of registers is four (X1, Z1, X2, and Z2), and
including two registers for intermediate values (T1 and T2),

the total number of registers is six. The idea of the
common Z projective coordinate system is to make sure
that Z1 ¼ Z2 at each iteration of López-Dahab’s algorithm.
This condition is satisfied at the beginning of the iterations
since the algorithm starts from Z1 ¼ Z2 ¼ 1. Even if
Z1 6¼ Z2, we can satisfy this condition using three extra
field multiplications, as shown in the following equation,
where the resulting coordinate set is ðX1; X2; ZÞ:

X1  X1 � Z2;

X2  X2 � Z1;

Z  Z1 � Z2:

ð4Þ

Since we now assume that Z1 ¼ Z2, we can start the point
addition algorithm with the common Z projective coordi-
nate system. With Z ¼ Z1 ¼ Z2, (1) is rewritten as shown
by (5). Now, ZAdd and XAdd have a common factor of Z2:

ZAdd ¼ðX1 � Z2 þX2 � Z1Þ2 ¼ ðX1 þX2Þ2 � Z2;

XAdd ¼x � ZAdd þ ðX1 � Z2Þ � ðX2 � Z1Þ
¼x � ZAdd þ ðX1 �X2 � Z2Þ:

ð5Þ

Due to the property of projective coordinate systems, we
can divide ZAdd and XAdd by the common factor Z2. The
comparison of the original equation with the modified
equation is summarized in Table 2. Note that the new
formula of the point addition algorithm is independent of
the previous Z-coordinate value.

In the point doubling algorithm, there is no such reduction
since it deals with only one EC point. Nevertheless, we can
simplify the point doubling algorithm by noticing that T 2

1 þ
X2 � ðT1 þXÞ2 at steps 6, 7, and 8 in Table 1. One field
multiplication can be reduced using this mathematical
equality. Equation (2) is rewritten as follows, where c2 ¼ b:

ZDouble ¼ðX2 � ZÞ2;

XDouble ¼ X2
2 þ c � Z2

� �2
:

ð6Þ

Note that the resulting Z-coordinate values are different
between the point addition and doubling formulas. In order
to maintain a commonZ-coordinate value, extra steps similar
to (4) are required. These extra steps must follow every pair of
the point addition and doubling algorithms. The final
mathematical expression and its algorithm are shown by
the following equation and in Table 3, respectively:

X1  XAddZDouble ¼ xðX1 þX2Þ2 þX1X2

n o
ðX2ZÞ2;

X2  XDoubleZAdd ¼ X2
2 þ cZ2

� �2ðX1 þX2Þ2;
Z  ZAddZDouble ¼ ðX1 þX2Þ2ðX2ZÞ2:

ð7Þ

In Table 3, the mark of ðT1Þ at each squaring operation
indicates that the T1 register is free to store some other
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value. The reason for this will be explained in this section.
The comparison of the amount of field operations between
López-Dahab’s algorithm and our algorithm is shown in
Table 4.

Noting that the multiplication and the squaring are
equivalent in the MALU operation, the workload of our
algorithm is the same as that of López-Dahab’s algorithm,
and we still reduce the storage by one register. Moreover, if
an EC with b ¼ 1 is chosen in y2 þ xy ¼ x3 þ ax2 þ b, one
additional multiplication can be saved in the point doubling
algorithm. In our work, a is randomly selected, and b ¼ 1.

5.3 ECP’s MALU Architecture

The MALU architecture of the ECP, which reuses the
MALU in [12], is shown in Fig. 3. The registers in the MALU
are combined with the external registers to reduce the
number of registers. At the completion of the multiplication
or addition operation, only register RegA is updated, while
registers RegB and RegC hold the same data as at the
beginning of the operations. Therefore, RegB and RegC can
be used not only to store field operands but also to store
some intermediate values of the proposed point addition
and doubling algorithm where we need five registers for
X1, X2, Z, T1, and T2 in Table 3.

An extra care should be taken at this point since the same
value must be placed in both of RegB and RegC for
squaring. Therefore, during squaring, only one register can
be reused. This fact would conflict with our purpose to

reuse each of RegB and RegC as a storage of the point

addition and doubling algorithms. Fortunately, it is possible
to free one of the registers to hold another value during
squaring. As shown in Table 3, T1 can be reused whenever a
squaring operation is required.

In Fig. 3, cmd signals the command to perform multi-
plication or addition as shown by (3). When the MALU

performs a multiplication, each digit of d bits of RegB must
be provided to the MALU. Instead of addressing each digit
of the 163-bit word, the most significant digit (MSD) is
provided, and a circular shift is performed by d bits. The
shift operation must be circular, and the last shift must be

the remainder of 163=d since the value must be kept as the
initial value at the end of the operation. During the MALU
operation, an intermediate result is stored in RegA.

5.4 Circular Shift Register File Architecture

By reusing the MALU registers for the Montgomery ladder
algorithm, we reduce two of the registers as discussed in the
previous section. This means that all the registers of the
MALU and the Montgomery ladder algorithm should be

organized in a single register file. Therefore, the register file
of our system consists of six registers. We use a circular shift
register file to reduce the complexity of the multiplexer. The
area complexity of a multiplexer in a randomly accessible
register file increases as the square of the number of

registers. On the other hand, the area complexity of the
multiplexer in a circular shift register file is a constant. As a
result, this model reduces about 30 percent of the gate area
of the register file.
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Fig. 3. ECP’s MALU architecture.

TABLE 3
Proposed Point Addition and Doubling Algorithms



Although the register file in Fig. 4 is a circular shift
register file, each register is independently controlled for
efficient management. RegA is the only register that gets
values from outside of the register file. Data_in is for the
data from a memory unit. This data can be either a scalar k
or a point P for EC point multiplications of k � P . Since the
data is input as 8 bits, RegA performs 8-bit shifts to keep the
previously loaded data. The signal “1” is for the initializa-
tion of the Z-coordinate value. In the multiplexer for RegB,
the shift of “d” positions is a circular shift so that RegB goes
back to the original value after finishing the field multi-
plication. Except for RegA and RegB, all the registers can be
updated only by the preceding register. Note that the
multiplexers for RegC, RegD, RegE, and RegF are not
implemented since the enable signals of flip-flops can be
utilized to indicate whether to update with new values or to
keep their previous values.

With the given multiplexers, any replacement or reor-
dering of the register values can be achieved. Since only
RegA and RegB get multiple inputs, only two fixed-size
multiplexers are necessary. Note that RegA, RegB, and
RegC in Fig. 4 are used as the three registers for the MALU
in Fig. 3.

5.5 EC Processor (ECP) Architecture

The ECP architecture is shown in Fig. 5. EC point add
and doubler (EC Add&Doubler) consists of Control1, the
MALU, and the register file. Control1 receives the EC
parameters and gives the result of EC scalar multi-
plication through Control2. Control2 conveys the data
from/to Control1 and reads a key (or a scalar) through
the bus manager. The key is read in bytes and stored in
a 1-byte buffer in Control2. Control2 also controls the EC
Add&Doubler according to the Montgomery algorithm in
Algorithm 3.

In our system, we assume that the coordinate conversion
to the affine coordinate system and the calculation of

Y -coordinate value are performed on a tag reader or a back-

end system.

5.6 Register File Management for Algorithm
Implementation

The register file management for the point addition

algorithm is shown in Table 5. Each step requires one cycle

except for the field multiplications and the read operation of

x (step 14). The read operation of x requires 28 cycles, which

is composed of seven cycles for the synchronization with

the bus manager and 21 cycles for the reading of 21 bytes.
For the field multiplication, only the final results are

shown. At the beginning of the operation, we assume that

X2, X1, and Z are stored in RegA, RegB, and RegC,

respectively. RegD, RegE, and RegF are marked with “�”

since meaningful values are not stored yet. On each step of

the register file management, each register value is updated
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according to the architecture in Fig. 4. While RegA can be
updated by either RegB or RegF, the other registers can be
updated only by their preceding registers. During the
procedure, registers are marked with “�” whenever the
previous values are not used any more. The field addition
and multiplication are performed as RegA RegB� RegC
and RegA RegAþRegC, respectively. The register file
management for other parts can be similarly described.

The use of this register file increases the number of cycles
due to the control overhead. However, considering that a
field multiplication takes a large number of cycles, the
number of overhead cycles is relatively small. One thing
that we need to consider is the peak power consumption. If
all the registers are updated at the same time, the large peak
power consumption can be a problem. In the proposed
architecture, at most four registers are updated at a time.
This number can be reduced up to two by introducing more
overhead cycles, but it cannot be less than two, since the
field multiplication in the MALU updates two registers.

6 MICROCONTROLLER

In general, modular additions and multiplications are
needed in protocols. Because they are not part of the critical
calculations and thus do not contribute to the latency, we
decided to perform these modular operations on the 8-bit
microcontroller in a byte-serial fashion. In order to reduce
the computation amount of modular reductions, we use a
form of redundant representation by using five extra
guard bits.

6.1 General Modular Arithmetic Operation

All the scalar values are 163 bits long, so a scalar needs
21 bytes (168 bits) in an 8-bit controller. Therefore, we can

utilize the extra five bits as bits for computation efficiency

without extra overhead. In the redundant modular opera-

tion, a scalar is not reduced to the fully minimized form of

163 bits, but it is allowed to have a length of 168 bits. Those

extra guard bits make the computation efficient.

6.1.1 Modular Addition with 8-Bit ALU

We start the modular operations by assuming that all the

scalars have a length of 168 bits. The modular addition is

described in Algorithm 4.

Algorithm 4. Modular addition with 8-bit ALU

Require: A ¼
P167

k¼0 ak2
k, B ¼

P167
k¼0 bk2

k

Ensure: C ¼ AþBmod n

1: C  AddðA;BÞ;
2: C0  

P166
k¼0 ck2

k, D 
P1

k¼0 ckþ1672k,

C1  MultiplyðN1; DÞ;
3: C  AddðC0; C1Þ;
4: Return C;

Step 1 is for addition, and steps 2 and 3 are for reduction,

where N1 ¼ 2167 mod n. To provide the validity of the

reduction, we consider the following:

C mod n ¼
X168

k¼0

ck2
k

 !
mod n

¼
X166

k¼0

ck2
k þ 2167 �

X1

k¼0

ckþ1672k

 !
mod n

¼
X166

k¼0

ck2
k þN1 �

X1

k¼0

ckþ1672k

 !
mod n:

ð8Þ

Since the size of N1 is 163 bits, N1 �
P1

k¼0 ckþ1672k is

165 bits long, and the final result will be up to 168 bits.
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Therefore, the modular addition requires two Addð�; �Þ
operations and one Multiplyð�; �Þ operation. Addð�; �Þ and

Multiplyð�; �Þ are described in Algorithms 5 and 6,

respectively. Though the inputs of Addð�; �Þ in Algorithm 4

are 21 bytes long, Addð�; �Þ is defined for 22-byte inputs so

that it can be used for the reduction of the modular

multiplication as well.

Algorithm 5. Addition of 22-byte operands: C ADDðA;BÞ
Require: A ¼

P175
k¼0 ak2

k, B ¼
P175

k¼0 bk2
k

Ensure: C ¼ AþB
1: CarryBit  0;
2: for i from 0 to 21 do

3: AðiÞ  
P7

k¼0 a8iþk2
k, BðiÞ  

P7
k¼0 b8iþk2

k;

4: fCðiÞ; CarryBitg  AðiÞ þBðiÞ þ CarryBit;
5: end for

6: Cð22Þ  CarryBit;

7: Return C;

In Algorithm 5, CarryBit is a 1-bit variable that stores the

carry of the addition of two 1-byte values. AðiÞ is the ith byte

of A. In Algorithm 6, CarryByte is a 1-byte variable that

stores the most significant byte of the multiplication of two

1-byte values. M0 is the least significant byte, and M1 is the

most significant byte of AðiÞ �D.

Algorithm 6. Multiplication of a 21-byte value by a 1-byte

value: C MultiplyðA;BÞ
Require: A ¼

P167
k¼0 ak2

k, D ¼
P7

k¼0 dk2
k

Ensure: C ¼ A �D
1: CarryByte  0, CarryBit  0;

2: for i from 0 to 20 do

3: AðiÞ  
P7

k¼0 a8iþk2
k;

4: fM0;M1g  AðiÞ �D;
5: fCðiÞ; CarryBitg  M0 þ CarryByte þ CarryBit;
6: CarryByte  M1;

7: end for

8: Cð21Þ  CarryByte þ CarryBit;
9: Return C;

6.1.2 Modular Multiplication with 8-Bit ALU

The algorithm of byte-serial modular multiplication is

described in Algorithm 7.

Algorithm 7. Modular multiplication with 8-bit ALU

Require: A ¼
Pk¼167

k¼0 ak2
k, B ¼

Pk¼167
k¼0 bk2

k

Ensure: C ¼ A �Bmod n

1: for i from 20 down to 0 do

2: C0  28 � C0;

3: D 
P7

k¼0 b8iþk2
k, C1  MultiplyðA;DÞ;

4: C  AddðC0; C1Þ;
5: C0  

P169
k¼0 ck2

k, D 
P6

k¼0 ckþ1702k,

C1  MultiplyðN2; DÞ;
6: C  AddðC0; C1Þ;
7: C0  

P166
k¼0 ck2

k, D 
P3

k¼0 ckþ1672k,

C1  MultiplyðN1; DÞ;
8: C  AddðC0; C1Þ;
9: end for

10: Return C;

Steps 2-4 are for a 1-byte shift, multiplication by 1 byte,
and accumulation. The remainder, steps 5-8, are for the
reduction, whose validity is described by (9) and (10),
where N1 ¼ 2167 mod n, and N2 ¼ 2170 mod n. The size of C
before the reduction, i.e., in step 4, is 177 bits since the both
of C0 and C1 are 176 bits long and the addition of the two
will produce up to 177 bits. The following equation
describes steps 5 and 6, and (10) describes the steps 7
and 8 in Algorithm 7:

C mod n ¼
X176

k¼0

ck2
k

 !
mod n

¼
X169

k¼0

ck2
k þ 2170 �

X6

k¼0

ckþ1702k

 !
mod n

¼
X169

k¼0

ck2
k þN2 �

X6

k¼0

ckþ1702k

 !
mod n ¼ C0:

ð9Þ

In (9), since the size of N2 is 163 bits and the size of
N2 �

P6
k¼0 ckþ1702k is 170 bits, the size of C0 is at most

171 bits. C0 can be reduced again according to

C0 mod n ¼
X170

k¼0

c0k2
k

 !
mod n

¼
X166

k¼0

c0k2
k þ 2167 �

X3

k¼0

c0kþ1672k

 !
mod n

¼
X166

k¼0

c0k2
k þN1 �

X3

k¼0

c0kþ1672k

 !
mod n:

ð10Þ

Since the size of N1 is 163 bits and the size of N1 �P3
k¼0 c

0
kþ1672k is 167 bits, the size of the final result is at most

168 bits. Therefore, the reduced C (i.e., C after finishing
step 8 in Algorithm 7) can be used for the next iteration.

6.1.3 Comparison with Barrett’s Modular Reduction in

Modular Multiplication

Barrett’s algorithm [8] is one of the most efficient modular
reduction algorithms for a general number n. Let the size
of n be t bits and M ¼ A�B, where we calculate
A�Bmod n. Barrett’s reduction can be expressed by

� ¼ 22t

n

� �
;

q0 ¼ M

2t

� �
� �
2t

� �
;

R ¼M � q0 � n:

ð11Þ

� can be precalculated, and hence, it does not contribute to
the computation amount. Since R is congruent to M mod n

and R < 3n, the final result requires at most two t-bit

subtractions after calculating R. Therefore, the required
computation in the worst case is two t-bit multiplications,
one 2t-bit subtraction, and two t-bit subtractions. For the
calculation, it requires 5t-bit temporary memory since M

requires 2t-bit memory, q0 requires t-bit memory, and the
result of q0 � n needs to be stored in separate 2t-bit memory.
Therefore, the required memory is 105 bytes if t is 163 and
the unit of memory is 8 bits (each t bits will need 21 bytes).
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In the proposed modular multiplication in Algorithm 7,
steps 3-4 are for the multiplications, and steps 5-8 are for the
reduction. The complexity of the reduction is exactly two
n-bit multiplication, and the required temporary memory is
44 bytes. Therefore, the proposed modular reduction is
more efficient in both computation and memory. The
comparison between two algorithms is summarized in
Table 7.

6.2 Eight-Bit ALU

ALU has an 8-bit adder and an 8-bit multiplier. The detailed
algorithms for general modular operations are implemen-
ted in hardware and performed using these two blocks.

6.3 Addressing and Memory Management

The addressing is composed of 13 bits where the first two
4 bits are used for a device ID and a block address, and the
last 5 bits for a byte address (Table 8). The device ID
indicates the ROM for the program, the ROM for data, the
RAM, the RNG, the front-end module, and the ECP. The
block address and the byte address are used only for ROM
and RAM. Even the nonmemory devices are memory
mapped so that the microcontroller gives an input or gets
an output.

Since all the scalar values are 21 bytes long, each block
is composed of 21 bytes. All the basic data managements
are based on blocks. This makes the program and the
control very simple. For example, the program needs to
specify only the block address for the general modular
operations.

The process of intermediate value storage for the
modular addition is described in Table 9, where we assume
that the operands of the modular addition are stored in
Blocks 2 and 3. The numbering of 1), 2), and 3) indicate the
steps of Algorithm 4, and the numbers inside of the

parentheses are the size of the variables in bits. For the
modular addition, two blocks of RAM must be reserved to
hold intermediate values and the final result.

The process of intermediate value storage for the
modular multiplication is described in Table 6, where we
assume that the operands are stored in Blocks 2 and 3, and
the steps 1), 2), etc., represent the steps of Algorithm 7.

For the reduction, n is not used but N1 and N2 are used,
which should be precalculated and stored in ROM. The
modular multiplication also needs to reserve the first two
memory blocks in RAM, so they should not store mean-
ingful values before starting modular operations. Note that
the size of Blocks 0 and 1 is 22 bytes, which is 1 byte larger
than the other blocks. Though the results of the modular
operations are not fully reduced in tags, such reduction can
be taken care of in the reader or the server.

6.4 ROM for Data

There are some data that should be stored in tags for their
processing. The data may include the private key of a tag,
the public key of the reader, and system parameters. If this
kind of data is hardwired, the architecture can be simplified
since tags do not need to access the memory and the
hardwired data is simpler than any other memory
structure. However, the hardwired data cannot be changed
if the architecture is once produced as an ASIC. Therefore,
some of the data should be stored in nonvolatile memory.
Table 10 shows the ROM usage of the Schnorr protocol as
an example, where N1 and N2 are used for general modular
operations, k is the private key of a tag, and xðP Þ is the
X-coordinate value of the base point P .

6.5 Instructions of the Microcontroller

The instructions must be carefully designed since they are
directly related to the system performance and the program
size. If the instructions are designed at a lower level, the
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RAM Usage for Modular Multiplication

TABLE 8
Physical Memory Address Map

TABLE 9
RAM Usage for Modular Addition

TABLE 10
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memory for a program will grow and the performance will
be degraded since most of the control must be done in
software. Instructions are at a high level to reduce the
control overhead. Programmability is still required as we
want to use the device for multiple protocols.

In the proposed architectures, the program is stored in
ROM starting from the address 0. Each instruction is
composed of 1, 2, or 3 bytes, where the first byte is for a
command, and the remaining bytes are for block addres-
sing. Since most of the data is constructed in blocks and
the designed instructions manipulate data in blocks, the
program is significantly simplified, and the programmer
does not have to care about the details of the computation.
Since the block-level instructions are implemented in
hardware, the processor runs fast and efficiently. Table 11
summarizes some important commands where each of the
instructions and operands is one byte and RAM[i] is the
ith block of RAM.

Table 12 shows an example program for the Schnorr
protocol of Fig. 1.

7 SYNTHESIS RESULTS AND PERFORMANCE

ANALYSIS

In order to find the best trade-offs, we have designed three
different architectures of the ECP, as shown in Table 14.
Type 1 is the minimal version described so far. Type 2 uses
an extra register to hold the X-coordinate value of the base
EC point (i.e., P at the EC scalar multiplication of k � P ), say,
xðP Þ. Therefore, this extra register makes the ECP load xðP Þ
only once and use for the whole calculation of an EC scalar
multiplication. Otherwise, the ECP has to load xðP Þ at every

iteration in the Montgomery algorithm, which means that

the ECP has to load 163 times for a 163-bit key. Type 3 has

an extra register and a randomly accessible register file. The

use of the extra register and the randomly accessible

register file increase the gate area and reduce the number

of cycles. Therefore, the ECP Type 1 has the least gate area

and the most number of cycles, and Type 3 has the most
gate area and the least number of cycles in the same

digit size.
The proposed architectures are synthesized using a low

leakage power library of UMC’s 0.13 �m (fsc0l_d_sc_tc.db).

The synthesized architectures include the microcontroller,

the bus manager, and the ECP corresponding to everything

within the dashed lines in Fig. 2. Some samples of the

synthesis results and the performances are shown in

Table 13. The number of cycles is to finish the Schnorr

protocol, which includes one EC scalar multiplication, some

general modular operations, the random number genera-

tion, and the data transmission/reception.
The clock frequency is chosen to finish the Schnorr

protocol within 250 ms and to be a factor of 13.56 MHz, i.e.,

the carrier frequency of a reader in our system. Therefore,

tags can use a simple division logic of the carrier frequency

for their internal clock frequency so that a separate pulse
generator is not needed. Though the Schnorr protocol

requires only one EC scalar multiplication, some other

protocols such as the Okamoto protocol [5] requires two EC

scalar multiplications. We expect one EC scalar multi-

plication to finish in 250 ms so that even the protocols that

have two EC scalar multiplications can finish in 500 ms.

Five hundred milliseconds is a very reasonable response

time though it is too much delay for sequential accesses of

multiple tags. However, it is possible to solve the

throughput problem by applying a multiple-access protocol

that can handle multiple tags in parallel. This is possible

because most of the time taken in the processor is caused by
the calculation inside of tags, and therefore, if we can make

multiple tags start the authentication in parallel and the

radio communication of each tag exclusive, the overall

throughput can be effectively increased.
The gate area is dominated by the register file. In order

to minimize the gate area, we minimize the flip-flops. The

UMC standard cell library of 0.13 �m offers a very

compact D flip-flop combined with a multiplexer, which

can be implemented in 6.25 gate area. In the case of Type 1

and the digit size of 1, the register file occupies 7.53 Kgates.

This is around 7.7 gates per bit including the multiplexers.
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The trade-offs of the gate area and the number of cycles
depending on the digit size are shown in Fig. 6, where each
of the three line graphs represents each of different types.
On each graph, the leftmost-side dot is for the digit size of
one, and the digit size grows one by one through the
rightmost-side dot until the digit size of 10. The most
compact architecture is Type 1 with the digit size of one. If
the digit size is increased to more than five, Type 2 shows
better performance than Type 1 in terms of the cycle
number and area product. Again, if the digit size of Type 2
is increased enough, Type 3 will show better performance.
This result is due to a constant factor in the number of
cycles, which is independent of the digit size in Type 1.
Note that Type 1 has to perform some register file
management operations due to its special architecture of
the shift register file and also has to load the X-coordinate
value of the base EC point at each iteration in the
Montgomery algorithm. Type 2 also has some constant
factor of the cycles due to the shift register file management,
but it is smaller than Type 1. Since Type 3 does not have
such constant factors, the number of cycles can be more
effectively decreased by increasing the digit size.

One of the most important factors in RFID tags is power
consumption, especially if tags are passive. In order to get
the average power estimation in the gate level, we used
Design Vision and ModelSim SE. We generated Value
Change Dump (VCD) files in ModelSim using a test bench
data. Then, VCD files are translated to Switching Activity
Interchange Format (SAIF) files, which are used in Design
Vision to get average power consumptions. Since we used a
low leakage power library of UMC, the leakage power is
negligible, as shown in Table 13.

Fig. 7 shows the synthesis results for the power
consumption. According to the synthesis results, while
increasing the digit size is an effective way to reduce the
dynamic power consumption, it increases the leakage
power. Since the leakage power is negligible, we get lower
total power consumption as we increase the digit size.
However, considering the gate area, we should limit the
digit size. Although Types 2 and 3 show lower power
consumptions than Type 1 when the digit size is increased,
since the gate area is larger, increasing the digit size of
Type 1 would be a better choice rather than choosing Type 2
or Type 3.

According to Zhou et al. [17], the maximal allowed
power for tags is less than 100 �W, and in [19], the author
presents 30 �W for a security processor. ISO 18000-3
(13.56 MHz) [18] requires the power consumption of less
than 15 �W at 1.5 V to guarantee 1-m operating range. In
our synthesis results, if we increase the digit size, the power
consumption becomes close to 10 �W. This power con-
sumption would be low enough for even a passive tag.

7.1 Parallelism in ECP and General Modular
Operations

The operations in the ECP are most critical in the number of
cycles and afterward come general modular operations. For
efficiency, the system is designed to run the EC operations
and the general modular operations in parallel. In the Schnorr
protocol, this parallelism is not useful since the general
modular operations must be performed after the EC opera-
tions are finished. However, depending on the protocol, this
parallelism can effectively reduce the number of cycles.

7.2 Required Memory Space of ROM and RAM

The required memory amount is dependent on the
cryptographic protocol. In the case of the Schnorr protocol,
the required memories are summarized in Table 15. Note
that one block of memory is 21 bytes, and 2 extra bytes are
required in RAM, which are used for modular operations.
During the modular operations, blocks 0 and 1 of RAM
require an extra byte each (refer to Table 6).
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Synthesis Result and Performance

ð1Þ The synthesis results are for RFID processor which includes the micro controller, the bus manager and ECP.
ð2Þ The number of cycles and the time are to complete the Schnorr protocol of Fig. 1 and Table 12.

TABLE 14
ECP Types



7.3 Memory Access

The synthesis results do not include ROM and RAM, and
hence, the power consumption should be considered
separately. The number of memory accesses for the Schnorr
protocol is summarized in Table 16 to give an idea for the
estimation of power consumption in memory. Note that the
number of memory accesses is independent of the digit size
of the ECP. Type 1 reads ROM more than Types 2 and 3
since it does not have a register for the EC base point (it has
to read the base point every time it is needed). There is no
difference between Type 2 and Type 3 except in the register
file type in the ECP.

7.4 Comparison with Related Work

Table 17 shows the comparison with related work. Even
though the key size of [20] is much smaller than ours, it has
a larger gate area and a larger number of cycles (when the

digit size is more than one). The result in [21] shows
15,094 gates, which is still larger than the digit size of three
of our proposal and requires more than three times cycles.
The results in [22] also show a larger gate area and a larger
number of cycles. Among related work (except for our
designs), [19] has the least power consumption. Though the
power consumption is smaller than our design of the digit
size of one, the delay is much larger. Moreover, in our
design, the power consumption can be effectively reduced
by increasing the digit size. One notable thing is that only
our designs can perform the general modular operations.
Based on this comparison, our designs require small gate
areas and small numbers of cycles and consume small
power and energy.
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Fig. 7. The trade-offs of digit size and power consumption for three different types.
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Required Memories for the Schnorr Protocol
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8 CONCLUSION

We propose a compact architecture of an EC-based security
processor for RFID. For a compact ECP, we introduced
several techniques such as the common Z-coordinate
system, the register reuse, and a circular shift register file.
We also proposed an algorithm for general modular
operations with a redundant representation using a few
extra guard bits. By utilizing the remainder bits of long
scalars, we designed an efficient modular operation algo-
rithm without overhead. The designed modular operations
not only are computationally efficient but also reduce
memory requirement compared to conventional modular
algorithms. Moreover, the ECP and the modular operation,
which are the two most critical operations, can be performed
in parallel so that the number of cycles can be effectively
reduced, depending on the cryptographic protocol.

We synthesized the proposed architectures with 0.13-�m
CMOS technology for three different types and for different
digit sizes of the ECP to show trade-offs for the number of
cycle number, gate area, and power consumption. Compared
to other reported results, our architecture not only minimizes
the gate area and power consumption but also shows better
performance. According to the synthesis results, the power
consumption can be reduced to near to 10 �W, which would
be low enough even for a passive RFID tag.
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